

VIIRS Reflective Solar Bands Calibration Updates

X. Xiong¹, J. Butler¹, B. Efremova², A. Wu², N. Lei², J. Fulbright², Z. Wang², A. Angal³

1) NASA/GSFC, Greenbelt, MD; 2) Sigma Space Corp., Lanham, MD; 3) SSAI, Lanham, MD

Outline

- CLARREO Related Activities
- VIIRS Reflective Solar Bands (RSB) and On-orbit Calibration
- 2-Year On-orbit Performance (S-NPP VIIRS RSB)
 - Solar Diffuser and Solar Diffuser Stability Monitor
 - RSB Detector Responses from SD and Lunar Calibration
 - Detector SNRs
- Summary

CLARREO Related Activities

- CLARREO Reflective Solar (RS) Calibration Uncertainty
 - Methodology and UC assessment tool development (internal technical report)
- Calibration Inter-comparison
 - Aqua MODIS and S-NPP VIIRS
 - Improve RS on-orbit calibration reference
- Importance of CLARREO to GSICS and other Missions
 - Jim Butler and Jack Xiong represented NASA at the 14th meeting of the GSICS Executive
 Panel at the Japan Meteorological Agency in Tokyo, Japan, July 15-16, 2013
 - Jack Xiong represented NASA at the GSICS Research Working Group meetings and user workshops (D. Doelling from LaRC also actively involved)
 - To brief current status of CLARREO while maintaining the project's international visibility, interest, and importance

Publications

- 1 paper on sensitivity study of RS sensor spectral range, sampling, and frequency (TGRS submitted)
- 1 paper on VIIRS early on-orbit calibration (inter-comparison) performance (JGR in press)

Continued Importance of CLARREO to GSICS

-The scope of the Global Space-based Inter-calibration System (GSICS): to define, share and implement community-agreed best practices, standards, procedures and tools for optimizing the calibration of operational meteorological, climate and other environmental space-based observation instruments.

-GSICS recognizes that initiatives such as CLARREO and TRUTHS will provide hyperspectral instruments whose measurements are directly traceable to SI standards *in orbit*. These would provide critical benchmark observations for climate monitoring and absolute reference instruments for satellite inter-calibration.

- 14th GSICS Executive Panel meeting participants

15th GSICS Executive Panel meeting scheduled for May 16-17, 2014 at the China Meteorological Agency in Guangzhou, China.

VIIRS Reflective Solar Bands

- Visible Infrared Imaging Radiometer Suite (VIIRS)
 - S-NPP VIIRS (F1) was launched on October 28, 2011 (SDR Cal/Val Review in Dec. 2013)
 - JPSS 1 VIIRS (F2) has nearly completed the sensor-level ambient test (launch in 2017)
 - JPSS 2 VIIRS (F3) is currently being built by the sensor vendor (launch in 2022)
- Heritage instruments: AVHRR, OLS, SeaWiFS, MODIS
- Spectral range: 22 bands between 0.4 μm and 12.5 μm
 - 16 moderate (radiometric) bands (M1-M16); 5 imaging bands (I1-I5), and 1 day/night band (DNB)
 - Dual gain bands: M1-M5, M7, and M13 (7 bands)
 - Reflective solar bands (RSB): M1-M11, I1-I3, and DNB
- Spatial resolution: 375 m for I-bands and 750 m for M-bands and DNB
- Swath: 3040 km (daily global coverage)
- On-board calibrators (MODIS heritage): SD, SDSM, and BB
- VIS/NIR, SMIR, and LWIR focal plane assemblies (FPA)
- Pixel aggregations (along-scan direction) and bowtie deletion (edge of scan)

On-orbit Calibration (RSB)

On-orbit Operation and Calibration

- Key Events (operation/calibration activities)
 - Launch: 10/28/11
 - Instrument turn-on: 11/8/11
 - Nadir door open: 11/21/11 (first image from VIS/NIR)
 - Cryo-cooler door open: 1/18/12 (observations from all bands)
 - BB warm-up/cool-down: started from 2/6/12 (quarterly, 8 since launch)
 - SD calibration performed each orbit
 - SDSM operated on a daily basis
 - Roll maneuvers: started from 1/4/12 (near-monthly, 17 since launch)
 - Yaw maneuvers; 2/15/12 2/16/12 (SD/SDSM screen transmission)
 - Pitch maneuvers: 2/20/12 (TEB response versus scan angle)

RSB Solar Calibration

RSB Calibration F and H Factors

1/F: Detector Gain; H-Factor: SD Degradation

$$L_{EV} = F \cdot \left(c_0 + c_1 \cdot dn_{EV} + c_2 \cdot dn_{EV}^2\right)$$

$$L_{SD_Meas} = F \cdot \left(c_0 + c_1 \cdot dn_{SD} + c_2 \cdot dn_{SD}^2 \right)$$

$$L_{SD\ Comp} \propto BRDF_{SD}(t) \cdot \tau_{SDS}$$

$$F = \frac{L_{SD_Comp}}{L_{SD_Meas}} \longleftarrow$$

$$BRDF_{SD}(t) = H_{SD}(t) \cdot BRDF_{SD}(t_0)$$
$$H_{SD}(t) = H(t) / H(t_0)$$

$$H(t) \propto \frac{dc_{SD} \cdot \tau_{SDSMS}}{dc_{SUN} \cdot \tau_{SDS}} \longleftarrow$$

The dn and dc are VIIRS and SDSM detector "corrected" responses

RSB Lunar Calibration

Multiple scans of I1 lunar images (Jan 4, 2012)

Integrated lunar irradiance (or radiance)

$$J(B, M, G) = \sum_{s,d} [c_0(B, M, G) + c_1(B, M, G)dn(s, d) + c_2(B, M, G)dn(s, d)^2]$$

- B: Band; M: HAM side; G: Gain stage; d: Detector; s: Sub-frame
- dn: Background subtracted response
- $-c_0$, c_1 , and c_2 : calibration coefficients
- Relative lunar F-factor

$$F(B,M,G) = J_{Model}(B)/J_{sensor}(B,M,G)$$

 $F = \frac{L_{SD_Comp}}{L_{SD_Meas}}$

Lunar model (ROLO) predication provided by Tom Stone (USGS)

On-orbit Performance

SD Degradation

Larger degradation at shorter wavelengths

Changes in Spectral Band Response

- Large changes for several NIR/SWIR bands (caused by RTA mirrors contamination)
- SNR performance continue to meet the design requirements a

Changes in Relative Spectral Response (RSR)

Modulated RSR developed and applied to calibration and SDR data production

SD On-orbit Degradation

MODIS & VIIRS SD Degradation

VIIRS has no SD door Terra MODIS SD door fixed at open since July 2003

S-NPP VIIRS: 2 Yr

Aqua MODIS: 11.5 Yr

Terra MODIS: 14 Yr

Changes in Spectral Band Response

Large changes in NIR/SWIR response

Noticeable SD and Lunar calibration difference in VIS (M1-M3)

Improvements: SD calibration and lunar model

On-orbit SNR Performance

SNR/SNR_{spec} > 1: performance better than specification

Changes in Relative Spectral Response

Mirror Degradation Impact on Sensor Relative Spectral Response

λ dependent optics degradation

Modulate RSR has been applied to VIIRS calibration and data production

Changes in Relative Spectral Response

Mirror Degradation Modeling and Predication (design lifetime: 7 years)

SDR Calibration Performance

VIIRS reflectance trends over the Libya-4 desert

IDPS SDR (operational LUTs)

L-PEATE SDR (VCST LUTs)

SDR Calibration Performance

VIIRS reflectance trends over the Libya-4 desert

IDPS SDR (operational LUTs)

L-PEATE SDR (VCST LUTs)

RS Cal UC Assessment Tool: Status and Path Forward

- Completed an Excel tool to assess the CLARREO RS calibration error budget based on basic assumptions for the instrument design
 - The tool is operational and gives adequate results when tested with known parameters (from MODIS);
 - For CLARREO the tool is operated with sample input (for illustration purposes only);
 - The error analysis implemented in the CLARREO tool is documented (an internal technical memo);
 - The tool design is flexible and allows easy implementation of new elements or the usage of alternative instrument designs and their respective uncertainty sources.
- For a realistic estimate of the CLARREO error budget, a database should be complied with values of different UC contributors using results from instrument prototype or other sensors with similar design, including
 - Solar attenuation mechanism and uncertainty several alternative methods could be implemented with input from their respective uncertainty estimates;
 - Stray light at Earth and Sun view;
 - Spectral resolution and wavelength calibration uncertainty;
 - Detector response characterization and uncertainty (as a function of instrument conditions);
 - Polarization sensitivity uncertainty (as a function of instrument conditions)

TOA Reflectance Retrieval

Earth view reflectance $\rho_{EV}(\lambda)$:

$$\rho_{EV}(\lambda) = \frac{\pi L_{EVap}(\lambda)}{E_{sun}(\lambda, d_{SE})\cos(\theta_{SE})}.$$

Stray light radiance is presented as a fraction radiance at the aperture.

$$\rho_{EV}(\theta_{EV}, \lambda) = \frac{1}{\cos(\theta_{SE})} \frac{d_{SE}^2}{d_{Sun}^2} \frac{f(\lambda, \Delta t)g(\lambda, \Delta T)(1 + s_{Sun})\tau_{atten}A_{atten}\Delta t_{eSun}}{\Omega_{ap}A_d(1 + s_{EV})\Delta t_e} \times \frac{r(x, y, t_{EV})dn_{EV}(x, y)}{\sum_{i} \sum_{v} r(x_i, y_i', t_{Sun})dn_{Sun}(x_i, y_i')}, \quad \text{Detector response considered linear}$$

where $dn(x, y) = DN(x, y) - DN_{BG}$; and the reciprocal detector response is: $F(\lambda, t)c(\lambda, T_{INST}(t))r(\lambda, x, y, t)$

 $F(\lambda,t)$ – characterized on orbit:

$$F(\lambda, t_{EV}) = f(\lambda, \Delta t) F(\lambda, t_{SV}); \Delta t = t_{SV} - t_{EV}.$$

 $c(\lambda, T_{INST})$ – from pre-launch characterization:

$$c(\lambda, T_{EV}) = g(\lambda, \Delta T). \ c(\lambda, T_{SV}); \ \Delta T = T_{SV} - T_{EV}.$$

r(x,y,t) – flat field pix-to-pix response measured on orbit.

 E_{sun} – Solar irradiance at the Earth surface.

 $cos(\theta_{SE})$ – Angle of incidence of the solar light on the Earth.

 L_{EVap} – Earth radiance at the aperture.

 $s_{EV}(\lambda)$, $s_{Sun}(\lambda)$ – Stray light correction.

 τ_{sys} (λ) - System transmittance of the common optical path between EV and Sun view.

 $\tau_{pol}(\lambda)$ - Polarization sensitivity (EV).

 A_d , Ω_{ap} – Field stop area and aperture solid angle.

 τ_{atten} (λ) – Attenuator transmittance.

 A_{atten} — Attenuator area.

 Δt_e – Exposure time.

dn(x,y) – Offset subtracted counts at pixel with coordinates x (spectral), y (spatial).

 $c(\lambda, T_{INST})$ – Average (over pixels) detector response, characterized prelaunch.

 $F(\lambda,t)$ — Correction to the detector response accounting for time dependent degradation. Evaluated on-orbit.

r(x,y,t) - Flat field detector response

 (accounting for pix-to-pix
 variations) possibly a function of time. Evaluated on-orbit.

TOA Reflectance Retrieval Uncertainty

Earth reflectance uncertainty:

$$\frac{\delta \rho_{EV}}{\rho_{EV}} = \left[\left(\frac{\delta s_{Sun}}{1 + s_{Sun}} \right)^{2} + \left(\frac{\delta s_{EV}}{1 + s_{EV}} \right)^{2} + \right]$$

$$= \left[\left(\frac{\delta \tau_{atten}}{1 + s_{Sun}} \right)^{2} + \left(\frac{\delta \tau_{pol}}{1 + s_{ev}} \right)^{2} + \left(\frac{\delta A_{d}}{1 + s_{ev}} \right)^{2} + \left(\frac{\delta A_{atten}}{1 + s_{ev}}$$

$$\left(\frac{\delta f}{f}\right)^{2} + \left(\frac{\delta g}{g}\right)^{2} + \left(\frac{\delta r_{xy}}{r_{xy}}\right)^{2} + \left(\frac{\sum_{i,y} (\delta r_{x_{i}y_{i}})^{2}}{(\sum_{i,y} r_{x_{i}y_{i}})^{2}}\right) + \left(\frac{\sum_{i,y} (\delta r_{x_{i}y_{i}})^{2}}{(\sum_{i,y} r_{x_{i}y_{i}})^{2}}\right) + \left(\frac{\delta g}{r_{x_{i}y_{i}}}\right)^{2} + \left(\frac{\delta g}{r_{x_{i}y_$$

Signal noise: shutter noise, read out noise, dark current noise, ADC quantization noise $+ \left(\frac{\delta dn_{EV}}{dn_{EV}}\right)^2 + \left(\frac{\sum_{i,y} (\delta dn_{Sun})^2}{(\sum_{i,y} dn_{Sun})^2}\right) +$

 $+2\left(\frac{\partial E_{Sun}/\partial \lambda}{E_{Sun}}\right)^{2}\delta \lambda^{2}+2\left(\frac{\delta \Delta \lambda}{\Delta \lambda}\right)^{2}+\left(\frac{\delta \Delta t_{eratio}}{\Delta t}\right)^{2}$ $+ \left(\frac{\Delta \rho_{nonlin}}{\rho_{EV}}\right)^{2}]^{-1/2}$

- **\delta f** Uncertainty in the detector degradation estimate at $t_{\rm EV}$ based on $t_{\rm Sun}$. Wavelength and spectral differences to be considered.
- **or** Uncertainty on flat field response (to account for pix-to-pix variations).

Exposure time (EV /Sun View) ratio uncertainty.

Uncertainty from detector nonlinearity

Tool Interface

- Input:
 - ✓ Instrument parameters
 - ✓ Spectral channel
- Output:
 - ✓TOA reflectance uncertainty and margin to spec.
 - ✓ Uncertainty calculated for each view separately
 - ✓ Each view uncertainty is a combination of lower level uncertainties

Place Holder

Place Holder

Place Holder

Place Holder

Place Holder

0.15 %

0.15 %

0.15 %

0.15 %

0.15 %

Spec

Spec

Spec

Spec

0.000

0.000

0.000

0.000

0.000

%

Summary

- VIIRS continues to operate and calibrate well
 - Use of on-board calibrators (OBC): SD, SDSM, BB and lunar observations
 - On-orbit changes in sensor response are frequently and accurately tracked by the OBC
 - Data quality maintained via frequent calibration LUT updates
- Overall VIIRS on-orbit performance meets the design requirements
 - SDR quality: validated
 - Future improvements and dedicated calibration effort (e.g. modulated RSR)
- Importance of CALRREO to missions like Terra, Aqua, S-NPP, and JPSS

VIIRS and MODIS Spectral Bands

VIIRS Band	Spectral Range (um)	Nadir HSR (m)	MODIS Band(s)	Range	HSR
DNB	0.500 - 0.900				
M1	0.402 - 0.422	750	8	0.405 - 0.420	1000
M2	0.436 - 0.454	750	9	0.438 - 0.448	1000
М3	0.478 - 0.498	750	3 10	0.459 - 0.479	500
IVIO	0.476 - 0.496	750	3 10	0.483 - 0.493	1000
M4	0.545 - 0.565	750	4 or 12	0.545 - 0.565	500
141-4	0.0.00	700		0.546 - 0.556	1000
l1	0.600 - 0.680	375	1	0.620 - 0.670	250
М5	0.662 - 0.682	750	13 or 14	0.662 - 0.672	1000
				0.673 - 0.683	1000
М6	0.739 - 0.754	750	15	0.743 - 0.753	1000
12	0.846 - 0.885	375	2	0.841 - 0.876	250
			16 or 2	0.862 - 0.877	1000
М7	0.846 - 0.885	750		0.841 - 0.876	250
M8	1.230 - 1.250	750	5	SAME	500
М9	1.371 - 1.386	750	26	1.360 - 1.390	1000
13	1.580 - 1.640	375	6	1.628 - 1.652	500
M10	1.580 - 1.640	750	6	1.628 - 1.652	500
M11	2.225 - 2.275	750	7	2.105 - 2.155	500
14	3.550 - 3.930	375	20	3.660 - 3.840	1000
M12	3.660 - 3.840	750	20	SAME	1000
				3.929 - 3.989	1000
M13	3.973 - 4.128	750	21 or 22	3.929 - 3.989	1000
M14	8.400 - 8.700	750	29	SAME	1000
M15	10.263 - 11.263	750	31	10.780 - 11.280	1000
15	10.500 - 12.400	375	31 or 32	10.780 - 11.280	1000
				11.770 - 12.270	1000
M16	11.538 - 12.488	750	32	11.770 - 12.270	1000

1 DNB

14 RSB (0.4-2.3 μm)

Dual gains:

M1-M4, M6, M7

M12

7 TEB

VIIRS Reflective Solar Bands (RSB)

Description

- <u>Purpose</u>: Global observations of land, ocean, & atmosphere parameters at high temporal resolution (~ daily)
- Predecessor Instruments: AVHRR, OLS, SeaWiFS, MODIS
- Spectral range: 22 bands between 0.4 μm and 12.5 μm
- Spatial resolution: 375 and 750 m
- Swath Width: 3000 km

Key Features

- MODIS-like on-board calibrators
- 16 moderate (radiometric), 5 imaging, and 1 day/night bands
- Dual gains (7 bands)
- VIS/NIR, SMIR, and LWIR focal plane assemblies (FPA)
- Pixel aggregations and bowtie deletion

Yaw Maneuvers: Results and Applications

Ratio of Pre-launch LUT to Yaw Results (SD screen transmission x BRF)

SDSM Sun view screen transmission function derived from yaw maneuvers has been used in SDR calibration

The LUT for SD screen transmission x BRF derived from yaw maneuvers has also been applied recently to SDR calibration

DNB: Many New Applications

- The Day/Night Band has been used to detect a major power outage in the Washington, DC on the night of the Direcho storm on June 29, 2012.
- An analysis of the data after the storm showed that most areas had power restored within 3 days.

VIIRS DNB radiance time series before and after the power outage (6/29) shows that most of the power was restored in three days.

VIIRS DNB of the Washington/Baltimore area on June 26^{th} (top)and June 30^{th} .

The suburbs west of DC and Baltimore, in particular show dark areas.